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Abstract For companies it is essential to know the market price of the salaries of their
current and prospective employees. Predicting such salaries is challenging, as many
factors need to be considered, and large real datasets for learning are scarce. For this
reason, research on salary predictions is comparably rare and limited. In this study,
we investigate whether and how an advanced machine-learning approach, namely
ensembles of random-forest regression, can achieve high-quality salary predictions.
We use a large real dataset of more than three million employees and more than 300
professions. Our approach learns – for each profession – a random-forest regression
model to predict salaries. In our evaluation, we show that this approach performs
better than related work on salary prediction by machine-learning approaches with a
mean absolute percentage error (MAPE) of 17.1%. We identify reducing the number
of possible values of categorical variables, training separate models as well as outlier
handling as the key factors for the results achieved.

1 Introduction

Paying competitive salaries is essential for companies of any size to retain current
and attract new employees. At the same time, paying more than the market price is
equally undesirable from a company perspective. Determining the market value for
a particular employee or candidate is challenging, as salaries are influenced by many
factors. These include the profession, the region, the age, the work experience, the
company industry and the company size. Estimating competitive salaries requires a
database of (close to) real salaries in a good data quality. If large amounts of data
records are available, comparison groups can be built to benchmark salaries and

Frank Eichinger
DATEV eG, Nuremberg, Germany e-mail: frank.eichinger@datev.de

Moritz Mayer
DATEV eG, Nuremberg and University of Bamberg, Germany, e-mail: moritz.mayer@datev.de

1



2 Frank Eichinger and Moritz Mayer

to visualise salary distributions, for instance, of a certain profession, and provide
key numbers such as median values (see Figure 1 for an example). This can help
employees, employers and consultants to find out if a certain salary is within the usual
range. For the German market, there is the “Entgeltatlas” [19] of the German Federal
Employment Agency and the commercial product “Personal-Benchmark online”
[11] from DATEV eG which provide benchmark services based on large volumes
of real data. These tools display salary distributions based on profession and region
and partly on age and gender. To ensure statistical validity and privacy, distributions
need to enclose a certain number of individuals. Hence not all combinations of the
factors mentioned are valid and can be selected. However, these solutions do not
consider further factors than profession, region and demographics. Other relevant
attributes such as the company industry and size may not be looked at.
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Fig. 1: Example salary distribution from [11] including median and percentiles

If fewer data records are available or if a broader range of attributes should be used
to be more specific, comparison-group benchmarks cannot be used. Alternatively,
regression models may be used to predict salaries. This has the advantage that the
output is a numerical value in a currency which refers to a competitive salary.
Such values may be easier to interpret than a salary distribution alone. Further,
when a company hires a new employee, a regression-based approach can propose
an adequate salary. Particularly when the regression model uses more attributes
than the distribution of a comparison group, the predicted value typically is closer
to the competitive salary than the average or median of a distribution. This is an
advantage not only for human-resources managers using salary prediction tools, but
also, for instance, for tax advisers who get enabled to offer business consultancy to
their clients. Several commercial providers publish market overviews and individual
salary predictions derived from salary data obtained from surveys or interviews
of employers or employees. However, the exact statistic approaches employed are
usually confidential. One approach, the “Gehaltsvergleich BETA” [21] of the German
Federal Office of Statistics uses a relatively small sample of real salary data [24]
and employs a specialised linear regression model to predict salaries. However, if
more data records are available, machine learning, concretely more sophisticated
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regression models, may lead to better predictions. A general problem, particularly in
the scientific literature (see Section 2), but also for commercial offers, is the limited
availability of salary data in good quality. Therefore, most studies focus on very
specific industries or markets or use quite outdated or small datasets.

In this study, we investigate whether and how machine learning, particularly
regression trees and random-forest regression, can achieve high-quality salary pre-
dictions on a large dataset of salary data. As a dataset for learning and evaluation,
we use a sample of roughly three million real payslips each month over one year
including more than 300 professions originating from the payroll software from the
German company DATEV eG. In a nutshell, besides several pre-processing steps
including outlier removal, we propose an ensemble regression approach which learns
– for each profession – a random-forest regression model to predict salaries. In our
comprehensive evaluation, we show that this approach based on a large real dataset
(a) performs better than related work on smaller datasets (comparing the error mea-
sures published) and (b) that the prediction errors can be reduced by 17.8% compared
to our baseline.

The contributions of this study are as follows: (1) We show that more sophisticated
machine-learning models than linear regression, namely random-forest regression,
are suitable to predict salaries on a large dataset. (2) We demonstrate that an ensemble
of one regression model per value of a categorical independent variable may clearly
outperform a single regression model in situations where this variable has many
values. (3) Our evaluation is based on a real-world dataset of millions of payslips,
which cannot be found in the scientific literature in a comparable data quality and
quantity.

The remainder of this chapter is organised as follows: Section 2 reviews related
work, Section 3 describes our approach, Section 4 presents our results, Section 5
discusses them and gives directions for future research and implementation, and
Section 6 concludes.

2 Related Work

The state of research on statistical models for salary prediction is rather weak.
Although there is some work on salaries and their influencing factors as well as
on machine-learning approaches for prediction, the focus is usually on specific
aspects. This is either a relatively narrow selection of employees, for example, only
managers [34], or a relatively narrow selection of industries or sectors, for example,
only hospitals [43] or universities [4]. The goal of developing a statistical predictive
model that (a) covers a broad picture of salary factors and (b) is valid for as many
employees as possible has been pursued in comparatively few studies.

The work of Chakraborti [9] compares the predictive performance of five
machine-learning algorithms for salaries of U.S. census-data individuals. Tree-based
algorithms achieved the highest performance. Yet the census data used in the study
is quite outdated – from 1994 – and the salaries entailed are only available in the
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form of a categorical variable (> 50,000 $ and <= 50,000 $). Chakraborti addresses
this situation and reasons that having to use such an outdated dataset is illustrating
the lack of available datasets and research by other authors on the topic of salary
prediction. A study by Viroonluecha and Kaewkiriya [39] applies various machine-
learning algorithms to assess their salary prediction performance on data crawled
from a job platform in Thailand. The crawled data is relatively new – from 2018 –
but also limited: only employees with academic education are considered and the
dataset is relatively small (39,000 employees). The used neural network achieves
the highest performance, closely followed by the random-forest model of the study.
The performance metric used is the root-mean-square error (RSME). The result of
7,740 � (approximately 210 €) is difficult to assess, as there is no further informa-
tion on, for example, a relative deviation from the target, which a metric like the
mean absolute percentage error (MAPE) would give. Neither does the study provide
information on distribution metrics of the actual salaries in the dataset such as the
mean, the median or percentiles.

A related field of research which may use the same kind of data is employee
churn prediction [38, 41]. However, the studies in this field likewise are struggling
with the lack of available data and do not provide any additional insights into the
selection of machine-learning algorithms for salary data. In essence, the analysis of
the academic work in the field of salary prediction leads to the conclusion that related
work on salary prediction is scarce. A significant lack of publicly available, high-
quality datasets on employee salaries is hindering researchers to conduct more studies
researching the effectiveness of machine-learning algorithms in salary prediction.

Apart from the scientific literature, there are several commercial solutions for
salary predictions. However, most of them do not publish how they compute them.
One exception is the “Gehaltsvergleich BETA” [21] of the German Federal Office
of Statistics. The tool employs specialised linear regression models [37] to predict
salaries and is based on a relatively small sample (600,000 employees) of real
salaries [24]. It is therefore the product and study closest to the research presented
in this chapter.

3 Data Preparation and Random-Forest-Regression Modelling

In this section, we describe our dataset, the steps for pre-processing including outlier
handling, the selection of machine-learning models and our choice of an ensemble
of ensemble (random forests) approach for predicting salaries.

3.1 Data Source, Data Analysis and Feature Selection

In this study we work with a subset of a dataset of pseudonymised payslips extracted
from the payroll accounting solutions of DATEV eG. This dataset comprises the
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payslips of 3.14 million employees in Germany over one year not including any
trainees, working students, marginal employment or employees working less than 15
hours per week. The dataset available is limited to the 330 professions which occur
most frequently. In order not to be affected by any effects of the Covid-19 pandemic
and the resulting large shares of short-time allowances in certain industries such as
gastronomy, we have used data from the year 2019.

3.1.1 Dependent Variable

The dependent variable “salary” needs to be specified in more detail. We have
chosen to predict the annual gross income, a numerical variable in Euros. The
reason is that this value includes all special payments such as holiday pay, Christmas
bonus, further bonuses etc. This makes it easier to compare as monthly salaries do
not include such payments and some employees may not have them and may have
higher monthly payments instead. We have extrapolated months with missing or only
partial payments, for instance, when the employee was sick. Furthermore, we have
extrapolated values for employees working in part-time (less weekly working hours
than the company default) to the company-default weekly working hours (typically
40 hours) to have comparable numbers. Our preliminary experiments have shown
that extrapolating to the company default leads to better results than extrapolated to
a fixed number such as 40 hours. Our dependent variable, the annual gross income,
has a log-normal distribution, which is in line with the literature [28]. This means
that the income distribution is skewed to the right and displays a long right tail.

3.1.2 Independent variables

We have chosen the attributes listed in Table 1 from our dataset as independent
variables as an input for our prediction models. Our data analyses have shown that
all independent variables have a medium to high correlation with our dependent
variable. If we look at their correlations for each profession, it is obvious that our
variables have very different correlation values for the various professions. As one
example, the level of education is correlated with the salary. However, looking at
information-systems professionals as an example, the level of education only has a
negligible influence on the salary as the vast majority of them has a college degree.

The categorical variables company industry and federal state have many possible
instances. As this is not optimal for many machine-learning algorithms, we have
grouped them. Our preliminary experiments have shown that this may slightly in-
crease predictive performance. For the company industry, we use the hierarchical
structure of the official taxonomy [22] and assign one of 23 sections to a company.
Regarding the federal state, we cluster the states into four groups by minimising dif-
ferences in the median of the annual gross income within a cluster and maximising
it between the clusters. Also, the variable profession has many possible instances.
We propose a specific handling in Section 3.4.
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Table 1: Independent variables

Variable Type

em
pl

oy
ee

profession [23] categorical
age numerical
gender categorical
level of education [20] ordinal
level of professional training [20] ordinal

contract type (full time/part time1, temporary/permanent) [20] categorical

em
pl

oy
er federal state2 categorical

degree of urbanisation23 [14] ordinal
company size (number or employees) numerical
company industry [22] categorical

3.2 Outlier-Handling Strategy

Our dependent variable, the annual gross income, has a large spread. While the
distributions of the variable are quite different for the various professions, also the
spread within a profession can be quite large. Many salaries exceed the median
salary by a factor of more than 1.5. For example, while the median value for a
secretary is around 35,000 € per year and the 90% percentile is around 55,000 €
per year, there are individuals earning 100,000 € and more. Very likely, these data
points are outliers resulting from mistakes when entering the profession into the
payroll software or not updating it when the employee has climbed-up in career.
Another example is salaries below the German minimum wage probably caused by
weekly working hours incorrectly entered into the payroll software. As outliers may
affect prediction models quite heavily, a well-chosen strategy for outlier removal is
essential. We apply our outlier handling to our whole dataset before splitting it in
training, validation and test sets.

Instead of a simple approach for outlier removal which removes the highest and
lowest, say, 5% of data points per profession, we choose a more thorough approach.
The inter-quartile-range – the difference between the 75% and the 25% percentile
– is commonly used in box plots to create the whiskers which determine the upper
and lower threshold for outliers. We have investigated the percentage of outliers
in comparison to different inter-quartile-range factors (IQRF), which allowed us to
understand the outlier situation in the data more deeply. Initially we have chosen

1 Our analyses have shown that this may influence results even if we extrapolate to full time.
2 We derive the federal state and the degree of urbanisation from the company zip code.
3 The degree of urbanisation has three possible values which are ordered:

1. Cities (densely populated areas)
2. Towns and suburbs (intermediate density areas)
3. Rural areas (thinly populated areas)



Predicting Salaries with Random-Forest Regression 7

a conservative IQRF of 3 removing only 1% of the data, and we switch in our
evaluation (see Experiment 4 in Section 4.2) to the commonly used IQRF of 1.5,
removing 4% of the data.

3.3 Selection of a Machine-Learning Approach

While relatively simple linear regression models have been used in the related work
[24] on smaller datasets having similar attributes, we assume that more sophisti-
cated machine-learning models may achieve better performances when more data
is available. While several models such as support-vector machines and neural net-
works may be used for predicting numerical salaries, we have chosen to investigate
regression trees [8] and ensembles of such models, random forests [7], which have
performed well for salary predictions in [39]. We detail on random forests in the sub-
sequent section. These models offer several advantages: Regression trees and random
forests are said to be good in handling categorical attributes, missing values, noise
and outliers. In addition, they are said to be robust against overfitting, no separate
feature-selection, scaling or transformation steps are necessary, and correlated inde-
pendent variables do not affect the models by much. Furthermore, random forests
are one of the most accurate machine-learning methods [5]. Couronné et al. [10] and
Fernández-Delgado et al. [16] demonstrate this for the related classification problem
in large-scale evaluations.

3.3.1 Learning and Applying Random Forests

Random forests [7] are a machine-learning technique for classification or regression
that constructs an ensemble of decision or regression trees. The idea behind such
ensemble methods is that the prediction accuracy is increased by combining the
results from multiple – possibly diverse – models [1, 5, 27, 36]. Frequently, diversity
is achieved by introducing randomness into the learning algorithms. The algorithm
for random forests applies, besides other modifications, the bagging technique [6]
to tree-learning algorithms [33]. Details regarding decision and regression trees can
be found in several textbooks, for instance, in [1, 5, 36]. Algorithm 1 describes the
general process of learning a random forest RF from a training dataset TS consisting
of 𝑛 trees. It internally employs an arbitrary decision or regression tree learning
algorithm tree_learner() without pruning which is modified in order to internally
use a small random subset of the independent variables at each split. Hence, random
forests add two kinds of randomness to model-building: Firstly, the bootstrapped
sampling approach of bagging creates permutated training datasets. Secondly, using
random subsets of independent variables leads to more diverse trees. The reason
for using random subsets of variables is that otherwise even bagged trees having
differently permutated training sets tend to choose the same independent variables
at the top level, resulting in relatively similar trees [1]. The random-subset approach
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attempts to reduce the variance and the correlation of the predictions of the individual
trees, ultimately leading to better predictions than achieved by individual or bagged
trees [1, 5, 27].

Algorithm 1 Construction of random forests
Input: training set TS; number of trees 𝑛; a tree-learning algorithm tree_learner ( ) without pruning

using a small random subset of independent variables at each split
Output: random forest RF (a set of trees)
1: RF ← ∅
2: for 1 to 𝑛 do
3: TS′ ← a bootstrap sample of TS
4: RF ← RF ∪ tree_learner (TS′ )
5: end for
6: return RF

To deduce classifications or numeric predictions (in case of regression) from a
random forest, all contained trees are used to predict a data record. The result is
then derived by employing a majority-vote strategy (classification) or calculating an
average over all 𝑛 trees (regression).

3.4 An Ensemble of Random-Forest-Regression Models

We now describe our approach for predicting salaries with an ensemble of random-
forest-regression models.4 Our analyses regarding the correlation of independent
variables with the salary (see Section 3.1) as well as the experiments in our evaluation
(see Experiment 1–3 in Section 4.2) have shown that there is one independent variable
that outweighs the others by a considerable margin. This variable is the profession
of an employee, a categorical attribute having a high cardinality (330 possible
distinct values). This is challenging, as categorical features with high cardinality
are problematic for tree-based machine-learning approaches. The reason is that the
learning algorithms of decision and regression trees are unlikely to determine the
best split with this type of data [17, 35]. We propose to solve this problem with
an ensemble of random-forest-regression models where we train one random-forest
model per possible value of such a categorical feature with high cardinality and
feature importance as described in the following. We have chosen this approach
as possible alternative strategies such as grouping or clustering the values5 of the

4 While random forests are our main machine-learning technique for salary predictions, regression
trees can be used in our approach as an alternative. They are less complex and perform worse than
random forests. We compare the prediction performances of random forests versus regression trees
in Section 4.2 in detail.
5 We use such a strategy for the less predictive features company industry and federal state as
described in Section 3.1.
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high-cardinality feature would lead to the loss of potentially relevant information of
such a highly predictive feature.

We call a categorical independent variable having a high cardinality (denoted
𝑚) and high feature importance 𝑃. We denote the distinct values of 𝑃 𝑝1, ..., 𝑝𝑚.
In our case, the profession is the independent variable 𝑃 and the 𝑚 = 330 differ-
ent professions are 𝑝1, ..., 𝑝𝑚. We partition our training dataset TS by assigning
all tuples 𝑡 ∈ TS having the same value 𝑝𝑖 of 𝑃 to the same partition TS𝑃=𝑝𝑖 :
TS =

⋃
TS𝑃=𝑝𝑖 . We then train one random forest RF𝑖 for each TS𝑃=𝑝𝑖 using Algo-

rithm 1. Correspondingly, to derive predictions, we use 𝑃 to decide which random
forest RF𝑖 to use. Algorithm 2 describes our approach for the construction of an en-
semble model 𝐸𝑀 of random-forest-regression models. It internally calls a function
random_forest_learner() which learns a random forest as described in Algorithm 1.

Algorithm 2 Construction of an ensemble of random-forest-regression models
Input: training set TS containing a categorical independent variable 𝑃 having a high cardinality

and high feature importance; a random-forest algorithm random_forest_learner ( ) , for example,
Algorithm 1

Output: ensemble model 𝐸𝑀 (a set of random-forest-regression models)
1: EM ← ∅
2: partition TS into 𝑚 = |𝑃 | partitions TS𝑃=𝑝𝑖

where all tuples have the same value of 𝑃 𝑝𝑖
3: for 𝑖 = 1 to 𝑚 do
4: RF𝑖 ← random_forest_learner (𝑇𝑆𝑃=𝑝𝑖

)
5: EM ← EM ∪ RF𝑖

6: end for
7: return EM

In this study, we learn 330 random-forest models, one per profession. Each random
forest consists internally of many regression trees. To derive a salary prediction for
a specific employee, we use the employee’s profession to select the corresponding
random-forest model.

4 Evaluation

In this section, we present the evaluation of our approach as described in Section 3.4
on the dataset described in Section 3.1.

4.1 Experimental Setup, Measure of Prediction Accuracy and Baseline

We have implemented our approach in an Apache Spark cluster [42] on standard
central processing units (CPUs) using the scikit-learn library [31] for machine learn-
ing. For our experiments presented in the following, we have divided our dataset into
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an 80% training set, a 10% validation set and a 10% test set, which is a standard
procedure in machine learning [36]. For all but the last of our experiments, we use the
training set and perform a standard 5-fold cross validation to obtain the experimental
results. We then use the validation set for hyper-parameter tuning and use the test set
to derive our final results.

We measure the prediction accuracy using the standard mean absolute percentage
error (MAPE), which has also been used in the related work closest to ours [24].
The MAPE is the average of all absolute deviation values of the predictions from the
actual values divided by the actual value. As we employ an ensemble of prediction
models in many of our experiments, we calculate the average weighted by the number
of employees predicted by a model in this situation. The reason why we have chosen
the MAPE is that we are convinced that it is intuitive and makes more sense from a
business perspective for the problem of salary predictions than to use other measures.
For example, the probably most popular measure for regression, the mean squared
error (MSE), is not intuitive as squared Euros or Dollars do not make sense for
humans. Further, as some professions have much higher average salaries than others,
an accuracy measure using absolute values (for example, the MSE) is not a well-
enough indicator for the prediction accuracy. For instance, a deviation of 1,000 Euros
from the actual salary is a much better prediction for an actual salary of 100,000
Euros than for a 20,000 Euro salary. Therefore, a percentage-based accuracy measure
like the MAPE is a better choice for our business problem.

To compare our results from the machine-learning models, we define the baseline
as follows: The baseline predicts the salary of an employee with the median salary
of all employees in that profession while ignoring all further variables. This is a very
simple approach, but it simulates the first guess for a salary one would probably have
when looking at salary distributions as shown in Figure 1. All models developed
in this study are expected to perform better than this baseline. This simple baseline
approach already yields a MAPE of 20.8%. This is not far off from the MAPE of
19.3% published in the related work [24] using linear regression on many variables,
a by far more complex approach (but obtained on a different dataset, see Section 5.1).

4.2 Experimental Results

In Figure 2, we present the results of our five experiments. The results show that
training individual models per profession and a more extensive outlier handling
both are significant steps in improving the predictive performance. We always train
and evaluate a regression tree and a random-forest regression model and compare
it below. Note that Experiment 1 and 2 can be seen as preliminary experiments
to demonstrate the effect of our full approach (as described in Section 3.4) in
Experiments 3–5.

Experiment 1: One model for all professions. In our first experiment, we train
one model for all professions. The result of the random-forest model is already better
than our baseline. The difference is around one percentage point, which is a relatively
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Mean Absolute Percentage Error ( MAPE)

Baseline

Experiments Regression Trees Random Forests

1: One model for all professions

2: One model for all professions without profession variable

3: Individual model for each profession

4: More comprehensive outlier handling

5: Hyperparameter tuning

20.63%

21.77%

19.41%

17.84%

17.59%

19.80%

21.06%

18.63%

17.27%

17.06%

20.80% 20.80%

Fig. 2: Mean absolute percentage error (MAPE) of the baseline and our experiments

small improvement. As described in Section 3.4, to better deal with our important
categorical independent variable profession and its large number of possible values,
we switch to an ensemble approach in Experiment 3.

Experiment 2: One model without the profession. To demonstrate the influence
of the independent variable profession for salary predictions, we run this experiment,
which is the same as Experiment 1, but without using the variable profession. The
results are more than one percentage point worse than Experiment 1 and even worse
than our baseline which makes use of the profession only. This shows that this
variable is essential and needs to be treated adequately.

Experiment 3: Separate models for each profession. The ensemble approach
(random forest) reduces the MAPE by more than another percentage point compared
to Experiment 1. This is a little more than two percentage points better than our
baseline.

Experiment 4: More comprehensive outlier handling. As discussed in Sec-
tion 3.2, resulting from the fact that our dataset inherently contains some incorrect
data points, we deal carefully with the outliers in our dataset. In this experiment, we
switch from our conservative approach of outlier removal (IQRF = 3) to a less conser-
vative approach (IQRF = 1.5). This yields another improvement. The random-forest
performance (MAPE) improves by one percentage point compared to Experiment 2
and is 3.5 percentage points better than the baseline.

Experiment 5: Hyper-parameter tuning. Regression trees and random forests
come with several parameters to control and steer the machine learning process.
These should be adopted to the dataset. We try several settings for the three param-
eters with the highest possible impact [32] in the scikit-learn implementation [31]
using the training set for learning and the validation set for evaluation: (1) number
of variables randomly sampled as candidates at each split, (2) minimum number of
samples required to be at a leaf node and (3) number of trees in the forest. The result
of the hyper-parameter tuning yields another slight increase in predictive perfor-
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mance compared to Experiment 4. The resulting MAPE of 17.06% is roughly four
percentage points better than the baseline, a relative improvement of 17.8% (random
forests).

Finally, we have trained our models with the new parameters on the unified
training set (training set and validation set; 90% of all data) and have evaluated the
results on the test set (10% of all data). To ensure the model fit, we compared the
MAPE on the unified training set (16.57% for the regression trees, 16.39% for the
random forests) with the MAPE on the up to this moment unseen test set (17.60%
for the regression trees, 17.08% for the random forests). The differences of 6.2%
for the regression trees and 4.2% for the random forests are marginal. Hence, it can
be concluded that our models do not overfit, and it can be assumed that the models
generalise well to unseen data.

In all experiments, the random forests perform better than the regression trees.
This confirms the findings from the literature [5, 10, 16] which have been obtained
from classification problems. Our results show that random forests also increase the
predictive performance when it comes to regression.

4.3 Runtime

Learning our ensemble of random forests as described in Section 3.4 comes with
a considerable computational cost. We have measured runtimes in the range of a
few to several hours when learning our 330 random forests. As we have done all
experiments on standard central processing units (CPUs), and as random forests are
known to benefit from parallel computations in graphical processing units (GPUs),
it can be expected that GPUs can speed-up computations considerably. Preliminary
experiments of ours with neural networks on CPUs have shown that they perform
considerably worse than our random forests in terms of runtime (runtimes more
than doubled on the same hardware). This, however, depends to a large degree on
the chosen network topology, and neural networks likewise largely benefit from
GPUs. Particularly as salary information is usually not updated more frequently
than monthly, spending some hours of computation time each month for model
learning seems to be not problematic. Besides model learning, predicting salaries
for individual employees can be done faster than in one second, which allows for
integration in interactive software.

5 Discussion of the Results and Future Directions

We now discuss the results from the evaluation (Section 4) and give future directions.
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5.1 Comparison to Related Work

Comparing the mean absolute percentage error (MAPE) with values obtained from
different datasets is not easy, as the dataset itself and questions of pre-processing – in
particular outlier handling – affect the results (as shown in Experiment 4). However,
if there are MAPE values published, one might obtain a rough idea if the MAPE
values are in the same magnitude or not.

The authors of [24] publish a MAPE of 19.27%, which is a little more than two
percentage points higher than our results. However, the authors have used a smaller
dataset (roughly factor 5). As we do not know how this dataset was assembled
and if and how they have possibly eliminated outliers, a direct comparison is not
possible. The values nevertheless suggest that using random-forest regression on a
large dataset of salary data is worth the computational effort in comparison to the
results from the simpler linear regression model on a smaller dataset. The other
studies discussed in the related work do not publish MAPE values or have employed
classification algorithms to predict classes of salaries. This makes it impossible to
obtain meaningful error percentages. Furthermore, the same problems regarding
datasets and pre-processing apply. From all results published, we got the impression
that our MAPE of 17.1% is a respectable result, and that it will be hard to obtain
much better results using a data-driven approach without incorporating further data
than the data from payslips as investigated in our study.

5.2 Analysis of the Regression Trees and Random-Forest Results

In Section 4.2, we have presented the (average) MAPE of 17.1% for our random-
forest-regression ensemble. Following up on the promising overall performance of
our approach, we are interested in how the individual models perform (one per
profession).

Figure 3 presents histograms of the distributions of the MAPE values for the
baseline and our regression trees (Figure 3a) and the baseline and our random forests
(Figure 3b). The latter illustrates that both the distributions of the baseline and the
random forests have a relatively large range from roughly 10% to 30% (baseline)
or 35% (random forests), while the distribution of the random forest MAPE values
is clearly shifted to the left. As the average MAPE of the random forest ensemble
approach is lower, this left shift is plausible. It can be an indication that the input
parameters and data used in our models are more useful predictors for the salaries of
some professions than they are for others. For the models yielding comparably weak
prediction performances, factors not reflected in the data, but influencing the salary
of those professions in reality, may be the cause. The wide MAPE value range can
be observed in the regression trees, random forests and baseline approach alike. We
now discuss possible reasons for the characteristic that not all jobs can be predicted
with the same MAPE.
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Fig. 3: Distribution of the mean absolute percentage error (MAPE), the vertical axis
shows the number of models having a certain MAPE value

Fig. 4: The mean absolute percentage error (MAPE) versus the number of employees
per model (per profession)

Figure 4 displays the MAPE in relationship to the number of employees per model.
In general, professions with fewer employees have larger MAPE values, which seems
to be intuitive as there are fewer training examples. Figure 5 displays the MAPE in
relationship to the median salary. Here we can clearly see the best performance in
the lower incomes. High incomes of 40,000 € per year and more are difficult to
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predict (the general median salary in Germany is around 39,000 € [25]). The reason
is probably that many of the lower-paid professions are kind of more standardised,
and the salaries do not vary much. Probably, there are more collective agreements
in the professions where lower salaries are paid. The variation of salaries is a lot
higher in the professions with a higher median salary, leading to the fact that they
are harder to predict.

Fig. 5: The mean absolute percentage error (MAPE) versus the median salary (de-
pendent variable annual gross income)

While most salaries were predicted more accurately by the random-forest ensem-
ble than with the baseline model (in 309 out of 330 professions), we found that the
salaries of 21 professions were on average predicted more accurately by the baseline
model using nothing but the median of the profession. While there is no significant
influence of the number of employees per profession on the MAPE of the respective
model, the expertise level of those professions may be an explaining factor: Eleven
out of the mentioned 21 professions are “helper activities” (lowest expertise level)
and seven are of “professional expertise” (second lowest expertise level, according
to the German Classification of Occupations [23]), having both a below average
income. Probably, these employees have quite differing backgrounds and are thus
hard to predict.

5.3 Feature Importance

In order to better understand our random-forest models, we have conducted
permutation-feature-importance analyses [18] using the implementation of scikit-
learn [31]. Due to the high computational costs of these analyses, we have done this
for the models of a small sample of professions.

Figures 6 and 7 contain the results of two permutation-feature-importance analy-
ses of two random-forest models (professions). For these two models, the company
size is by far the most important independent variable, and the federal state is impor-
tant in both models. For the company industry, the importance is high in Figure 6
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Fig. 6: Box plot of the permutation feature importance in percentage points of the
random-forest regression model representing the profession ‘textile sewer’

and low in Figure 7. One explanation for the low value for the computer scientists
(Figure 7) is, that many of them work in the same industry. Hence, the industry does
not say much about the salary. For the age and the level of professional training
it is the other way round: Both variables are important for the computer scientists
(Figure 7) where the more experienced and better educated employees earn more.
They are less important for the textile sewers (Figure 6) where the spread of salaries
is not as big. The two examples from Figures 6 and 7 illustrate that the feature
importance vary quite largely in the different professions. Taking more than these
two examples into account, it is observable that some variables – in particular the
level of education and the gender – have a comparably low influences on the salary.
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Fig. 7: Box plot of the permutation feature importance in percentage points of the
random-forest regression model representing the profession ‘computer scientist’
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5.4 Usage of the Variable gender and Further Improvements

In this study, we make use of the variable gender. This makes sense from the
perspective that it is known that there is a gender pay gap [15] which we have
confirmed in our analyses (see Section 3.1). It might otherwise not be desirable
to use this variable in a real product, as those should not contribute to increase the
gender pay gap. In other settings, such as the “Gehaltsvergleich BETA” of the German
Federal Office of Statistics [21], the gender is used as well. The rationale is that its
provider has the mission to create transparency of salaries including the gender. As
we have observed the – maybe surprising – low variable importance of the gender
in the permutation-feature-importance analyses in Section 5.3, we have conducted
additional experiments: We have investigated the influence of the variable gender on
the predictions for all professions by removing it from our dataset. This decreases
the error values from the regression trees and the random forests in Experiment 5
(see Section 4.2) by less than half a percentage point. Hence, our approach can work
without the variable gender as it affects the predictive performance not by much.

To predict salaries more accurately, it would be desirable to incorporate the
work experience as another independent variable, as more experienced employees
usually have a higher salary. When working with payroll data, this information is
typically not available. Therefore, we have used the variable age as a surrogate and
will in the future additionally incorporate the period of employment with the same
employer. This might slightly improve the predictive performance as it approximates
the work experience. However, it would be desirable to capture the work-experience
information when hiring new employees and to keep it in the payroll software.

Our further ideas for performance improvements focus on pre-processing and
data engineering. One idea is to use more complex methods in the outlier-handling
process. For instance, clustering or anomaly detection. Another idea is to cluster the
different professions into groups of professions. For example, software developers
and programmers are two distinct professions in the classification of professions [23],
having very similar characteristics (for instance, regarding salary and level of pro-
fessional training). We plan to apply clustering techniques to merge such similar
professions into clusters to capture more professions, to have more data per model
to learn from and to possibly reduce the number of individual models. We see this
as a promising approach as we could already show that the number of employees in
the training data of the individual models correlates negatively with the prediction
error (see Section 5.2).

Other data-engineering ideas of ours concern the regional information: We plan to
further enrich our dataset with external data such as the population or the purchasing-
power index of the place of employment. It could also be interesting to calculate a
regional salary index based on our dataset and to use this as additional information
to characterise the place of employment. These ideas aim at capturing the regional
information better than with the federal state and the degree of urbanisation alone.
This characterisation might be necessary for improving the predictive performance,
as we know that the region has a significant influence on the salary, and as using zip
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codes or names of municipalities directly in the models might not work due to the
extremely large number of possible values of these categorical variables.

5.5 Assessment of Prediction Quality for Real-World Software
Products and Questions of Deployment

Even if further improvements as described before including enrichments with exter-
nal data will likely lead to improved values of the mean absolute percentage error
(MAPE), we do not expect these improvements to be large without having new data
sources describing the employees. One promising new source to improve predictive
performance could be the results of systematic employee ratings if companies have
implemented respective evaluation and assessment processes, but this would be hard
to compare between companies and would raise privacy questions. The assump-
tion that predictions might not be improved largely leads to the question whether
a MAPE of around 17.1%, which is roughly four percentage points better than the
simple baseline, justifies a rather complex and computationally expensive machine-
learning effort and will be accepted by customers. The question becomes even more
severe, when we improve our baseline approach, for instance by using median values
of the professions in the same region.

Deploying and running machine learning in productive environments is still a
rather complicated endeavour [12]. It includes monitoring and detection of concept
drift [30], model management and re-training [3] and questions of data privacy.
Attackers might, for instance, use an implementation of our approach to reconstruct
the original learning data. This needs to be prevented by data-security measures
such as limiting the number of requests that can be sent to the model API or by
advanced privacy technology [2, 29]. Solutions in this domain could be differential
privacy [13] – in particular subsampling [40] – or privacy-guided training [26].

Even if results may be improved by some degree, customers might still assume that
a MAPE of, say, 15% or more is relatively high. It is therefore important to explain
to (potential) customers of a product implementing our approach, how the MAPE
values are calculated. First, MAPE values are strongly affected by incorrect data,
and we must assume that not all wrong inputs regarding, for example, the profession
or the weekly working hours, can be captured by outlier handling. Second, we have
derived all MAPE values by predicting the salaries of real employees which we have
not used for learning. In consequence, large deviations do not necessarily mean that
the model is wrong, but might indicate that there are employees being underpaid
or overpaid, which likely happens in real world. Besides this, from a customer
perspective, predictions based on regression are more useful than having nothing but
the median of a distribution of a rather large population (as in [11], see Figure 1).
Furthermore, the results of our random forests outperform the baseline approaches
in 309 out of 330 professions (93.6%).

Taking all arguments in this section into account, we conclude that our approach
with the predictive performance described is valuable for the customers when inte-
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grated into suitable software tools and justifies the efforts described. One limitation
to our approach might be the applicability to large companies and possibly certain
under-represented professions, as our dataset focusses on small and medium-size
companies. However, if a more complete dataset than ours is available for learning,
we see no obstacles in applying our approach to it.

6 Conclusion

In this study, we have investigated an ensemble-of-ensembles approach for predicting
salaries based on salary data, where we have learned one random-forest-regression
model per profession. In our comprehensive evaluation on a large real dataset,
we have achieved a mean absolute percentage error (MAPE) of 17.1%. This is an
improvement of 17.8% compared to our baseline, and it is two percentage points
better than the results published of the related work (on a different dataset). Thus,
we have shown that sophisticated machine-learning models are suitable to predict
salaries on a wide range of professions and employees and that our ensemble-of-
ensembles approach clearly outperforms other approaches, such as simply setting the
prediction to the median per profession, or using linear regression. Our approach can
be integrated into salary-analysis solutions to help HR managers and tax consultants
to determine market prices for current and prospective employees.
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